3.8.20 \(\int \frac {x^2}{20+9 x^2+x^4} \, dx\)

Optimal. Leaf size=23 \[ \sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )-2 \tan ^{-1}\left (\frac {x}{2}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1130, 203} \begin {gather*} \sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )-2 \tan ^{-1}\left (\frac {x}{2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/(20 + 9*x^2 + x^4),x]

[Out]

-2*ArcTan[x/2] + Sqrt[5]*ArcTan[x/Sqrt[5]]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 1130

Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(
d^2*(b/q + 1))/2, Int[(d*x)^(m - 2)/(b/2 + q/2 + c*x^2), x], x] - Dist[(d^2*(b/q - 1))/2, Int[(d*x)^(m - 2)/(b
/2 - q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 2]

Rubi steps

\begin {align*} \int \frac {x^2}{20+9 x^2+x^4} \, dx &=-\left (4 \int \frac {1}{4+x^2} \, dx\right )+5 \int \frac {1}{5+x^2} \, dx\\ &=-2 \tan ^{-1}\left (\frac {x}{2}\right )+\sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 23, normalized size = 1.00 \begin {gather*} \sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )-2 \tan ^{-1}\left (\frac {x}{2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/(20 + 9*x^2 + x^4),x]

[Out]

-2*ArcTan[x/2] + Sqrt[5]*ArcTan[x/Sqrt[5]]

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^2}{20+9 x^2+x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[x^2/(20 + 9*x^2 + x^4),x]

[Out]

IntegrateAlgebraic[x^2/(20 + 9*x^2 + x^4), x]

________________________________________________________________________________________

fricas [A]  time = 1.65, size = 18, normalized size = 0.78 \begin {gather*} \sqrt {5} \arctan \left (\frac {1}{5} \, \sqrt {5} x\right ) - 2 \, \arctan \left (\frac {1}{2} \, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^4+9*x^2+20),x, algorithm="fricas")

[Out]

sqrt(5)*arctan(1/5*sqrt(5)*x) - 2*arctan(1/2*x)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 18, normalized size = 0.78 \begin {gather*} \sqrt {5} \arctan \left (\frac {1}{5} \, \sqrt {5} x\right ) - 2 \, \arctan \left (\frac {1}{2} \, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^4+9*x^2+20),x, algorithm="giac")

[Out]

sqrt(5)*arctan(1/5*sqrt(5)*x) - 2*arctan(1/2*x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 19, normalized size = 0.83 \begin {gather*} -2 \arctan \left (\frac {x}{2}\right )+\sqrt {5}\, \arctan \left (\frac {\sqrt {5}\, x}{5}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(x^4+9*x^2+20),x)

[Out]

-2*arctan(1/2*x)+arctan(1/5*x*5^(1/2))*5^(1/2)

________________________________________________________________________________________

maxima [A]  time = 2.98, size = 18, normalized size = 0.78 \begin {gather*} \sqrt {5} \arctan \left (\frac {1}{5} \, \sqrt {5} x\right ) - 2 \, \arctan \left (\frac {1}{2} \, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^4+9*x^2+20),x, algorithm="maxima")

[Out]

sqrt(5)*arctan(1/5*sqrt(5)*x) - 2*arctan(1/2*x)

________________________________________________________________________________________

mupad [B]  time = 4.37, size = 18, normalized size = 0.78 \begin {gather*} \sqrt {5}\,\mathrm {atan}\left (\frac {\sqrt {5}\,x}{5}\right )-2\,\mathrm {atan}\left (\frac {x}{2}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(9*x^2 + x^4 + 20),x)

[Out]

5^(1/2)*atan((5^(1/2)*x)/5) - 2*atan(x/2)

________________________________________________________________________________________

sympy [A]  time = 0.21, size = 20, normalized size = 0.87 \begin {gather*} - 2 \operatorname {atan}{\left (\frac {x}{2} \right )} + \sqrt {5} \operatorname {atan}{\left (\frac {\sqrt {5} x}{5} \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(x**4+9*x**2+20),x)

[Out]

-2*atan(x/2) + sqrt(5)*atan(sqrt(5)*x/5)

________________________________________________________________________________________